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Abstract It is shown that the Schr6dinger equation for a non-relativistic three-body system 
can be written in closed form by using only nine gMeraton of fhree independent O(2. I )  
algebras and a few physical paramelen (three masses and potential charaneristics). In the case 
of Coulomb three-body systems such a form contains only a finite number of terms and SiX 
~physicd p m e t e n  (three masses and three charga). For a number of Coulomb Uuee-body 
systems with unit charges (i.e. X+X+Z- and X + Y + Z - ) .  optimized parameters for simple 
approximate wavefunctions have been obtained. 

1. Introduction 

It is known that three-body systems play a unique role in non-relativistic quantum mechanics. 
Such systems are of interest in atomic, nuclear and plasma physics, as well as in condensed 
matter theory. From the theoretical point of view, three-body systems have a small number 
of degrees of freedom and, therefore, their properties can be found from the first quantum- 
mechanical principles. However, in contrast with two-body systems, they seem quite 
complicated and, therefore, as a rule, they have been investigated by applying numerical 
procedures. 

The main goal of the present article is to develop an altemative method for the analytical 
consideration of three-body systems. We will show that the SchrOdinger equation for a three- 
body system can be written as an equation in terms of generators of three independent 
O(2,  1) algebras. This makes it possible to find analytical solutions or to investigate 
its properties without direct solution of the ScMjdmger equation. Also, by using the 
commutation relations of the O(2 , l )  algebra, one can simplify significantly the Schrodinger 
equation and thereby, in principle, achieve greater accuracy of numerical solution. It should 
be mentioned here that such a procedure was used for the first time in [l] to consider 
Coulomb three-body systems. It was shown that in such a case the appropriate Schradinger 
equation contains only nine generators of three Q(2, 1) algebras and six physical parameters 
(the masses and charges of each of the three particles). Unfortunately, these nine generators 
could not be chosen as independent. Now we have overcome this and related problems and 
wish to present a closed form for this method. 
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2. Theory 

Let us consider a non-relativistic three-body system. The three point particles have 
the masses ml,mz,m3 and interact with each other by the scalar pair-potentials 
V 3 1 ( ~ 3 1 ) ,  V32(r32), V Z I ( T Z ~ ) ,  respectively. Without loss of generality we shall restrict 
ourselves to the case of central potentials Vi,(rjj) = Kj(rfj). Also, for simplicity, we 
shall consider the case when the three-dimensional angular momentum L equals zero (S- 
states), since the generalization to cases when L > 1 or when the potential contains the 
L . S, Lz and 4 operators is straightforward but non-hivial (for more details see [l]). For 
L = 0 the Hamiltonian has the form (in units where 7i = 1) 

+ Vz1(rd + v31@31) + V3dr3z) (2.1) 

where /A;' = mrl + m:', I and (i, j, k )  = (1,2,3). We wish to find solutions of the 
appropriate Schr6dinger equation which corresponds to the bound state spectra. The metric 
in the function space of the relative coordinates is determined by the following scalar product 

The rjj are relative coordinates, which are not independent (since e.g. Ir31 - r321 < rzl 4 
731 + 732) and a number of difficulties arise from this (see, e.g., [l]). However, there are 
three independent 'perimetric' Coordinates u1. UZ, u3 [2] which are related to the relative 
coordinates by 

with the inverse relations rij = ui + uj. where i # j = (1,2,3). All three perimehic 
coordinates are independent and non-negative (i.e. 0 < U; Q 00, where i = 1,2,3 [1,2]). 
The metric in the function space of the perimetric coordinates is 

jJ/ @I(UI.  UZ. U3)@2@1? UZ, u3)u;'u;'u;' dut duzdy.  (2.4) 

In terms of this metric the original Schr6dinger equation can be rewritten in the form 

0 = ~ I W ~ Z ~ ~ I ~ Z I ( H  - @Wl, UZ, 4)  

= ~IuZu3(ul +uZ)(Ul fu3) (u2  + U 3 ) ( H  - E)'b(ul, UZ, U 3 ) .  (2.5) 
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We wish to prove that this equation can be written in closed form in terms of the following 
nine generators 

where i is the imaginary unit and k = 1,2,3. Each set.k of three operators conforms to a 
O(2.1) ilgebra with the following commutation relations 

[ S k ,  Tk]  -iuk [G, Uk] = isk [U,, &] -iTk (2.7) 

where k = 1,2,3. For each k ,  the Casimir operator Cz = Si -  T: - U; has the value 0. All 
pairs of generators from SI, TI.  U'; SZ, Tz, U,; S3, G, U3 with  different^ indices commute 
with each other. This means that these three O(2,l) algebras are completely independent 
.(in contrast with the choice in [l]). 

Now, we rewrite the Schrodinger equation (equation (2.5)) in closed form in terms of 
only these nine generators and a few physical parameters 

~ U I U Z U S ( U I  + U Z ) ( ~ I  + u3)(uZ + u ~ ) ( H  - E)$(uI ,  UZ, u3) 

= x(ijk)[[(&' +&')A f mf'Bijk](Sj - uj)(Sk - uk)(Si + ui) 
+ &'A + m;'Blu +m,'Bnl+ m;'B31zI(Sk - uk)cq 
f 2i(PLij1cijk + f iz 'c ikj)(Sj  - uj ) (Sk  - u k ) F l  
+ 2 A X P X [VZI(SI - UI + SZ - UZ) + v31(Sl - U1 + S3 - Us) 

+ ~ ( S Z  - Uz + S3 - U3) + E ] $ ( S I  - U , .  Sz - U,. S3 - U3) = 0 (2.8) 

where ( i j k )  = (123), (231) or (312). and A, Bi jk ,  Cijk and P designate the following operator 
expressions 

A (SI - UI + SZ - UZ)(SZ - U, + S3 - u3)(sI - U I  + 5'3 - U,) 

&jk = ( S j  - uj f Sk - uk) 

x [(si -ui)(sk - uk) +(si - Ui)(Sj - uj) -(sj - Ujf(Sk - uk) +(Si - Ui)'] 

c i j k  (Si - Vi + Sk - uk)(Sj - uj + Sk - uk) 
P = (SI - UI)(SZ - Ud(S3 - U31 (2.9) 

which are finite polynomials in the powers of the nine generators for the three different 
O(2, 1) algebras (Si, E ,  Ut), (f = 1,2,3). 
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3. Applications and discussion 

We have shown that the Schrodinger equation (2.5) (or equation (2.8)) may be represented 
as a finite sum of terms, each of which has a closed form in terms of generators of three 
independent O(2,l) algebras as well as a few physical characteristics of the system (masses 
of particles, parameters of the potentials, etc). Therefore, to solve this equation one can 
use a number of algebraic methods and find its solution, in principle, without computation 
131. Let us consider briefly the three following applications of this approach to various 
three-body problems. 

3.1. On the formal solutions in the three-body problem 

First, consider the situation when each pair potential is a regular (analytic) function of the 
respective relative distance, i.e. 

Y j ( S i  - ui + sj - Uj)  = &k,c;j;"p,E(si - Ui)"'(Sj - Uj)V 

where the Cij:n, ,~ are determined from the explicit form of the potential Kj(q j ) .  

try to find the general solution of equation (2.8) in the form of a simple series 
In this case, from equation (U), by applying ihe commutation relations (2.7), we can 

$(sl - Ul, SZ - u2, S3 - u3) = &wn,lcn,m,l (~l  - ulY(s2 - uZ)"(s3 - u3)'4' 

(3.1) n m l  = & , m , i c n , m , l ~ i ~ ~  ~3 

where 4' is the constant 'vacuum vector' which does not depend upon the (Sf - U,)(; = 
1,2,3) generators and can be chosen, in principle, without loss of generality, to be equal 
to 1. 

The wavefunction $ in the form of equation (3.1) is a so-called 'formal solution' of 
the Schrodinger equation, i.e. an 'expansion that is capable of satisfying the Schradinger 
equation term by term, without requiring the physical boundary conditions to be satisfied' 
141. fln the Coulomb case, such boundary conditions would be e.g. the coalescence 
conditions [5] for two or more particles.) Discussion about the existence (absence) of such 
formal solutions for the threebody problem (mainly in the case of the Coulomb threebody 
He-like (or two-electron) systems) has been of great value since the early years of quantum 
mechanics (see, e.g., [&SI). The construction of formal solutions was used intensively later 
[2, 9-12] to obtain very accurate numerical solutions in three-body Coulomb systems. 

The coefficients c,,,,,,! in the formal solution @, equation (3.1). can be determined 
by using only the commutation relations of the O ( 2 , l )  algebras, equations (2.7) and the 
Hamiltonian in the form of equation (2.8). Therefore, these coefficients only depend 
analytically upon the parameters of the problem which are included in equation (2.8). 
Moreover, to find the linear equations for the coefficients cn,,,,,l a further simplification 
can be made. To do this the following six creation-annihilation operators are introduced as 
in [ 131 

U, = i(azal t- aFa2) TI = i ( 4 a l  - 4 a 2 )  SI = f(aza2 - a:q) 

Uz = l(b+bi 2 2  t- b:bz) Tz = $(b:bi - b:bz) Sz f(bzbz - b:bi) (3.2) 

U3 = 4(c:c1 i. 4 c 2 )  T3 = ;(.:cl - 4 . 2 )  s3 = +:c* - CTCI) 
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where 

.?aj - aja2 = --is.. 
bTbj -bib: = -i&j b+b+ - b t b t  = 0 b;bj - bjbi = 0 (3.3) 

ai+a+ - aj'ai+ = 0 aiaj - ajai = 0 ' I  I 

I 1 1  

ci+cj - cjc+ = -is-. ci'cj' - cfc+ = 0 CiCj - cjc; = 0 11 J Z  

for i = 1,2 and j = 1,2. By substituting equation (3.2) into equation (U), we obtain the 
equation 

where 

(3.5) +kzb+k3 + b  + k  + k  I!' = CCX,.X~.kt.b.ks,ks(a:)~'(dz) ( I ) (bz)  (C1 '(Cz) ~ ~ , ~ , o , o , o ,  0) 

In the last equation 10,0,0,0,0,0) is the 'vacuum vector', i.e. 

PIO, o,o,o, 0,O) = 0 (3.6) 

where p is any one of the operators al, az, bl, bz, ct and CZ. 
In fact, this means that the original Schrodmger equation for the Coulomb threebody 

problem in the coordinate representation has been reduced to the equivalent problem of three 
boson complex (charged) fields. Likewise, in principle, we have made a second quantization 
for an arbitrary non-relativistic three-body system. The solution of the second quantized 
equations may be easier than the original one in the coordinate representation (see, e.g., 
W1). 

3.2. Coulomb three-body systems 

For a Coulomb three-body system, the potential energy component in equation (2.8) is 

(sl - UI)(SZ - uZ)(S3 - U3)(ql~ZClZi +qlq3c312 fq243C231) (3.7) 

where the Cr,k are the three previously defined (equations (2.9)) finite (quadratic) 
polynomials of the (S, - U;),  ( i  = 1.2.3) generators. 41.42 and 43 are the charges of 
the particles (in the system of units where fi = 1, m, = 1 and e = 1 (Hartree atomic units)). 
In this case each term in the right-hand side of equation (2.8) contains a finite number of 
O(2,l )  generators. Therefore, one can try to find the exact solution (or to approximate it 
with high accuracy) by applying rotations (and complex rotations) which are determined 
with the help of unitary (non-unitary, respectively) transformations such as 

@(or, p,  y )  = exp[--iorTl- iBTz - iyT31 (3.8) 

where or, p, y are complex variables. 
From the commutation relations (2.7) it follows that 

( S + U Y F ( T )  = F ( T + ~ ~ ~ ) ( s ~ u Y  (3.9) 
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where F ( x )  is an arbitrary holomorphic (analytic) function on x and n is an integer. If we 
choose F ( x )  = exp(-ijx) where p is a real or complex number and n = 1, we obtain the 
HausdorffA2ampbell-Baker [15] formula 

exp(-ipT)(S f U )  exp(igT) = exp(fB)(S & U ) .  (3.10) 

Therefore, in the general case we find the following formulae for the @ transformation 
(equation (3.8)) 

Q t ( ‘ Y 3  B. Y)(sl  * ul)n‘(sZ f UZ)nz(& * U3)“’@P(% B, y )  

= exp(&la f nzB & n s y ) ( S ~  * U#’(& f UZ)”~(S~ f U3)“3 (3.11) 

and 

@+(a,p,Y)T;~T;L2T;1)~(a,B,y)  = T;’TPT3”1 (3.12) 

where nl, n2 and n3 are non-negative integers, and @t is the complex conjugate of @. 
The last two equations mean that the real or complex numbers a, p and y are the free 

parameters of the ‘rotation’ @. Their choice in a definite manner can be used to significantly 
simplify the original Schrtidinger equation with the Hamiltonian equation (2.8) and even to 
solve it analytically. It should be mentioned that this procedure is a generalization of the 
Foldy-Wouthuysen ‘rotation’ (in quantum electrodynamics) (see, e.g., [16]). 

Our first goal is to reduce the 
Hamiltonian, equation (2.8), for the Schrodinger equation to the diagonal form by applying 
the unitary transformation @, equation (3.8), with the optimized values of a, ,9 and y .  In 
fact, this means solving the appropriate eigenvalue problem analytically. However, it is 
easy to show that this problem is not solvable exactly in terms of only three real parameters 
a, B and Y .  

Another related problem is to obtain the ‘best approximate solution’ by a complete and 
very careful optimization of the three real parameters for the non-unitary transformation 

Let us consider only real values of a,B and y .  

B, Y ) .  

Wa, P 3  v) = expt-a(s1- U,) - B(sz - UZ) - y ( S  - WI. 

By the variational principle thii problem can be reformulated as follows. Consider the basis 
functions in  the form 

4 = exp(-(B’ + Y ’ ) ( ~ I  - VI) - (a’ + Y’WZ - UZ) - @‘+B‘)(s3 - u3))9 (3.13) 

where q is the ‘vacuum vector’ which can be chosen to be equal to 1. In this case the 
coordinate representation equation (3.13) takes the form 

4 = exp(-(B’ + y ‘ ) ~  - (a’ + y’)uz - (a’ + B’)u3) = exp(-a’r~z - B’r31 - y’rz1). (3.14) 

It should be noted that these functions have the factorized form in both the relative 
coordinates r31, r32, rzl and in the perimetric coordinates UI. UZ, ug. Our main question 
is: how many such functions (@) are needed to produce the lowest bound state in the 
Coulomb three-body system? This question presents specific interest for the systems with 
unit charges, i.e. for the X + Y + Z -  ions. 
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After very careful optimization of the a', B: y' parameters in the functions @, the answer 
is that except for the extremely weakly bound (so-called prethreshold) systems (e.g. the 
d+t+p- or p+?r+n- ions) one needs only one function (three parameters) for symmetric 
(i.e. such as X+X+Z-), and two functions (six parameters) for non-symmetric systems (i.e. 
such as X+Y+Z-). Our optimized values of the a', p', y' parameters for a number of such 
systems are presented in table 1, together with the energy in quasi-atomic units (e = 1, R = 1 
and mGo = 1, where. = min(mx,mr,mz)) .  We considered the symmetric systems 
from mH- up to mg and a few non-symmetric systems. All mass values can be found 
elsewhere (see, e.g., [17]). For comparision the 'exact' energies from the recent literature 
are listed for each system in table 1: mH- [181, [19] and m&+ [20]. The variational 
results for the other (intermediate) three-body system with unit charges in table 1 are from 
[ZI]. Our highly accurate variational results for the (tpp)- and (dpp)- ions in table 1 are 
published here for the first time. 

Table 1. The carefully optimized values of the three non-linear parameters and the total energies 
E, and the best 'exact' energies E- &nonown from the literame) for the lowest bound sates of 
Coulomb -body systems with unit charges in quasi-atomic units ("in = I ,h  = 1, e = 1). 

system U' B' 7' Et E C X  

-H- 1.075018 0.4837428 -0.1465637 -0.52386592978 ~ -0527750 1654431 

2+1-1- 
Ps-(l+l' 
D + D + ! r  

1.074801 
1.074 693 
1.074 368 
1.069273 
1.032008 
I .011947 
0.9563414 
0.7888136 
0.697 81 10 

- 1 7  0.520 1386 
0.9390592 

d+d+p- 0.991 9291 
t+t+p- 1.01 1 036 

1.051496 
-&+ 1.052 118 
p + a p -  0.9727714 

0.3113552 
p+t+p- 0.986 1977 

0.3525432 
d+t+p- 1.003480 

0.2393984 

' 0.4835586 -0.1464767 
0.4834670 -0,1464335 
0.483 1917 ~ -0.1463035 
0.478 8893 -0,1442731 
0,4482164 -0.129 8856 
0.4322761 -0.1234746 
0.3901085 -0.103 1240 
0.2797721 -0.0548906 
0.2294157 -0.0346167 
0.1479152 -0.0059907 
0.197 3986 0.080 087 95 

-0.523 762 830 28 
-0.523 71 1 544 22 
-0523 557 410 56 
-0.521 13993874 
-0.503.443 123 67 
-0.493 906 140 €6 
-0.46742432625 
-0.38714631377 
-0.343 19330120 
~0.25669200487 
-0.465047703 98 

-0.527649048 182 
-0.527 598 3x665 
-0.527445881 093 
-0.525054806223 
-0.507 544 602642 
-0.498 103091755 
-0.471 866342087 
-0.392 141 012853 
-0.348371 66.5 880 
-0.262005 070 2326 
-0.494 386 8202486 

0.201 8128 
0.203 3346 
0.206 4299 
0.2064762 
0.1154430 
0.9602925 
0,09504393 
0.9672839 
0.1693369 
0.9998013 

0.09894401 -0.491 12243557 -0531 111 135402 
0.1063759 -0.50051661700 -0546374225598 
0.1233115 -0.52034639558 -0.597 1390625 
0.123 5856 -0.520650797 64 -0.6026342140 
0.1082796 
0.048 185 17 -0.480 834 863 68 -0512711 7965008 
0,1130547 
0.03443778 -0.48760018887 -0.5198800897819 
0.111 9977 
0.09045443 -0.496 15799883 -0538594975058 

The optimized values of the nonlinear parameters are of great value, since by using 
these one can very easily estimate properties of such systems, e.g. the expectation value 
of the (a+-) function for the Ps- ion is - 0.0200768859, and by following [22] the total 
annihilation rate for the Ps- ion is - 2.0200857 ns-I. The 'exact' result is m 2.086 12 ns-' 
[21,22]. However, in the cases of other properties the agreement is not as good, e.g. for 
the electronelectron cusp. The same approach may also be very useful for the cases of the 
harmonic oscillator potential, the spherically symmetric square well potential and in other 
even more general and complex cases. 
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3.3. The virial theorem 

Finally, let us consider the virial theorem for three-body systems. As is well known, the 
virial theorem is of great value as an independent test of the results of numerical solution 
for the appropriate Schradinger equation. The physical meaning of the virial theorem is that 
the real physical state must be optimal with respect to distance variation [23]. However, 
in the independent perimetric coordinates the distance variations are determined by the T j  
( i  = 1,2,3) generators. We can write the following three independent hypervirial relations 
[23-251 

(3.15) 

where i = 1,2,3 and 16. is the eigenfunction which corresponds to the eigenvalue E. To 
obtain the explicit form of the Ai operators the following commutation relations are. useful 

(3.16) 

where j = 1.2.3; k = 1 ,2 ,3  and n is a non-negative number. 
By using the explicit form of the operator (H -E) (equation (2.8)) and the commutation 

relations (equations (3.16)) it is possible to find each hypervirial operator Ai. By summing 
equations (3.15) on i(i = 1,2,3) one obtains the relation between the expectation values of 
the kinetic energy and potential energy which is often called the ‘vinal theorem’ [7, 26-71, 

In conclusion we wish to mention that the same algebraic approach can be extended 
to the case of Dirac-type equations as well as to the cases of non-local potentials (e.g. 
Hartree-Fock equations). 
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