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Abstract. It is shown that the Schrédinger equation for a non-relativistic three-body system
can be written in closed form by using only nine generators of three independent O(2,1)
algebras and a few physical parameters (three masses and potential characteristics). In the case
of Coulomb thres-body systems such a form contains only a finite number of terms and six
-physical parameters {three masses and three charges). For a number of Coulomb three-body
systems with unit charges (ie. X*tXTZ~ and X*Y*Z™), optimized parameters for simple
approximate wavefunctions have been obtained,

1. Introduction

It is known that three-body systems play a unique role in non-relativistic quantum mechanics.
Such systems are of interest in atomic, nuclear and plasma physics, as well as in condensed
matter theory. From the theoretical point of view, three-body systems have a small number
of degrees of freedom and, therefore, their properties can be found from the first quantum-
mechanical principles. However, in contrast with two-body systems, they seem quite
complicated and, therefore, as a rule, they have been investigated by applying numerical
procedures. :

The main goal of the present article is to develop an alternative method for the analytical
consideration of three-body systems. We will show that the Schrédinger equation for a three-
body system can be written as an equation in terms of generators of three independent
OQ2, 1) algebras. This makes it possible to find analytical solutions or to investigate
its properties without direct solution of the Schrédinger equation. Also, by using the
commutation relations of the O (2, 1) algebra, one can simplify significantly the Schridinger
equation and thereby, in principle, achieve greater accuracy of numerical solution. It should
be mentioned here that such a procedure was used for the first time in [1] to consider
Coulomb three-body systems. It was shown that in such a case the appropriate Schrodinger
equation contains only nine generators of three (2, 1) algebras and six physical parameters
(the masses and charges of each of the three particles). Unfortunately, these nine generators
could not be chosen as independent. Now we have overcome this and related problems and
wish to present a closed form for this method. '

§ Permanent address:- Institute of Spectroscopy, Russian Academy of Sciences, Troizk, Moscow Region, 142 092,
Russia.

0305-4470/93/226507+09507.50 © 1993 10P Publishing Ltd 6507



6508 M Alexei et al
2. Theory

Let us comsider a non-relativistic three-body system. The three point particles have
the masses mi,mgz, m3 and interact with each other by the scalar pair-potentials
Vai(rs1), Vaz(raz), Var(ra1), respectively, ‘Without loss of generality we shall restrict
ourselves to the case of central potentials Vy;(7y;) = Vi;(ry;). Also, for simplicity, we
shall consider the case when the three-dimensional angular momentum L equals zero (S-
states), since the generalization to cases when L 2 1 or when the potential contains the
L. S, I? and §? operators is straightforward but non-trivial (for more details see [1]). For
L = 0 the Hamiltonian has the form (in units where & = 1)

1 (3_2 _%_3)_17-31-1-32 8
2pm \Brd 7y dry ms rsry 0rsdrs

1 (8 2 0\ lra-rg 9
"%(5;?; ;3_1@)_"12 rairsy 0rydra
1 82 2 9 1 my-ry 82
_%(E% 53_1‘3;) T mi rara 9radry

+ Var(ra} 4 Var (r31) + Vaalrs2) 2.0

where p' = m;' +m?, and G, j,k) = (1,2,3). We wish to find solutions of the
appropriate Schrodinger equation which corresponds to the bound state spectra. The metric
in the function space of the relative coordinates is determined by the following scalar product

f f Y1 (ra1, 13z, radra(rss, raz, For)rairaaran drap drag drag. (2.2}

The ri; are relative coordinates, which are not independent (since e.g. |ra; — razf < ra; €
ry1 + r32) and a number of difficulties arise from this (see, e.g., [1]). However, there are
three independent ‘perimetric’ coordinates uj, 1z, #3 [2] which are related to the relative
coordinates by

i = S(rat +r3t — r32)
uz = 3 (ra1 +rs2 —r31) (2.3)
U3 = L(rsa +rat —ra1)

with the inverse relations r;; = u; - u;, where { # j = (1,2,3). All three périmetric

coordinates are independent and non-negative (ie. 0 < #; < oo, where f = 1,2,3 [1,2D.
The metric in the function space of the perimetric coordinates is

f f Y1 (1, wtg, e3)Wraleen, i, a)u] 205wy dury dueg dus. (2.4)
In terms of this metric the original Schrédinger equation can be rewritten in the form

0 = urausrapraira(H — E)¥r(uy, up, u3)
= wyuztia(uy +ua)(er + ua)(ua + us) (H — E)Yr(uy, ua, us). (2.5)
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‘We wish to prove that this equation can be written in closed form in terms of the following
nine generators

. 0
I, = —luka—uk (2.6)

1 3
Uk_iuk(—ﬁ—l)

where i is the imaginary unit and £ = 1, 2, 3. Each set & of three operators conforms to a
0{2, 1) algebra with the following commutation relations ‘

[Sk, Ti] = —ili; [T, Url = i85, [Uk, S = —iT: @n

where & = 1, 2, 3. For each , the Casimir operator Cy = S7 — T — U has the value 0. All
pairs of generators from S1, 71, Uy; 82, T2, U; 83, Ta, Uz with different indices commute
with each other. This means that these three O(2, 1} algebras are completely independent
.(in contrast with the choice in [1]).
Now, we rewrite the Schrédinger equation (equation (2.5)) in closed form in terms of
only these nine generators and a few physical parameters
2uyuzus(uy + wa) (U + us)(uz + us)(H — EYfr(uy, ua, us) _
= D llleg’ + ughA + m7 Bypl(S; — U(Se — U)(S: + UD)

+ [ A+ my" Buos + m3" Byt + m3 ' Ban)(Si — U T T

+ 2iu; Cigr + iz Cij) (S — Up)(Se — UDT]

+2AxPx[V(Si— Ui+ S —U)+Va(Si — Uy + 53 — Us)

+Vaa(Sa—Us+ 8 — ) + ElY (St — U1, 82— Uz, $3—Uz) =0 (2.8)

where (ijk) = (123), (231) or (312), and A, By, Cijr and P designate the following operator
expressions

A=@—Ui+ S — )& -+ S - U3} (S — Ui+ 83— Uy
Bijp = (S —=Up + 5 —Us) . .
X [(S; —Ur)(Se = Up)+(S: = U)(Sy = Up) = (8 = Up)(Se = Up) +(S: = Uy
Cijp= (S — Ui+ S — U (S — Uy + 8 — Up)
Po= (S5 —U)(Sp —~ U)(S5 —Us) 2.9)

which are finite polynomials in the powers of the nine generators for the three different
0(2: 1) algebras (st 1i, Uf)’ (E = 15 21 3)
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3. Applications and discussion

We have shown that the Schrédinger equation (2.5} (or equation {2.8)) may be represented
as a finite sum of terms, each of which has a closed form in terms of generators of three
independent O (2, 1) algebras as well as a few physical characteristics of the system (masses
of particles, parameters of the potentials, etc). Therefore, to solve this equation one can
use a number of algebraic methods and find its solution, in principle, without computation
{3]. Let us consider briefly the three following applications of this approach to various
three-body problems.

3.1. On the formal solutions in the three-body problem

First, consider the situation when each pair potential is a regular (analytic) function of the
respective relative distance, i.e.

Vi (Si = Uy + 85 — Up) = By pr Cijpr e (Si — UI)R’(SJ - Uj)y

where the Cij;n ¢ are determined from the explicit form of the potential Vi; (rys).
In this case, from equation (2.8), by applying the commutation relations (2.7), we can
try to find the general solution of equation (2.8) in the form of a simple series

W(S) — U, 83 ~ Uz, 83 — Us) = B mtCnmi(S) — Up)™(Sa — U2)™(Sz — UsY g

!
= X n,1Cn,m W05 Uy (3.1

where ¢ is the constant ‘vacoum vector’ which does not depend upon the (& — Ui =
1,2,3) generators and can be chosen, in principle, without loss of generality, to be equal
to 1.

The wavefunction v in the form of equation (3.1) is a so-called ‘formal solution® of
the Schrédinger equation, i.e. an ‘expansion that is capable of satisfying the Schrodinger
equation term by term, without requiring the physical boundary conditions to be satisfied’
{4]. (In the Coulomb case, such boundary conditions would be e.g. the coalescence
conditions [5] for two or more particles.} Discussion about the existence (absence) of such
formal solutions for the three-body problem (mainly in the case of the Coulomb three-body
He-like (or two-electron) systems) has been of great value since the early years of quantum
mechanics (see, e.g., [6~8]). The construction of formal solutions was used intensively later
[2,9-12] to obtain very accurate numerical solutions in three-body Coulomb systems.

The coefficients ¢, in the formal solution ¥, equation (3.1), can be determined
by using only the commutation relations of the O(2, 1) algebras, equations (2.7) and the
Hamiltonian in the form of equetion (2.8). Therefore, these coefficients only depend
analytically upon the parameters of the problem which are included in equation (2.8).
Moreover, to find the linear equations for the coefficients ¢, a further simplification
can be made. To do this the following six creation—annihilation operators are iniroduced as
in [13]

U = Yafar + af az) Ty = (afa1 — af az) S, = a5, — afay)
Uy = (b3 b1 + b7 by) T = L5y — b} by) Sy =3(bF b2 — b by) (3.2)

Us = 3(cFer +efep) Ty = (&5 c1 —clen) Sy = i(cfer —cfer)
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where

to e gt = =18 ot gtat = fp o il =
ai aj — a;a; = —idy; e a; —a;a; =0 aia; — aja; =0

b1 bt =—is;  bibF - b+b+ 0 Bbj—bh=0 (33)

+ o —ids = =
¢ e — ¢ = —idy; ef cj —-cj ¢ =0 cic;— ¢ =0

fori=1,2 and j = 1, 2. By substituting equation (3.2) into equation (2.8), we obtain the
equation
EW @)™ (@) (@) @) )™ (o)™ (6™ (br) ™

x (e (en)i ()2 (c2)29 =0 (3.4)
where
¥ = BCh kg kaksks (@5 Y @ Y2 O 03 ) () (c)%10,0,0,0,0,0) (3.5)
In the last equation |0, 0,0, 0,0, 0} is the ‘vacuum vector’, i.e.

2|0,0,0,0,0,0 =0 ‘ (3.6)

where p is any one of the operators a), 4z, b1, by, €1 and ¢;.

In fact, this means that the original Schrédinger equation for the Coulomb three-body
problem in the coordinate representation has been reduced to the equivalent problem of three
boson complex (charged) fields. Likewise, in principle, we have made a second quantization
for an arbitrary non-relativistic three-body system. The solution of the second quantized
equations may be easier than the original one in the coordinate representation (see, e.g.,
[14]).

3.2. Coulomb three-body systems

For a Coulomb three-body system, the potential energy component in equation (2.8) is

(81 — U (8 — U2)(83 — Us)(gq192C123 + 193C312 + 9293 Cas1) (3.7

where the Ciy are the three previously defined (equations (2.9)) finite (quadratic)
polynomials of the (S; — U;), (i = 1,2, 3) generators. ¢, g, and g3 are the charges of
the particles (in the system of units where i = 1,m. = 1 and ¢ = 1 (Hartree atomic units)).
In this case each term in the right-hand side of equation (2.8) contains a finite number of
0(2, 1) generators. Therefore, cne can try to find the exact solution (or to approximate it
with high accuracy) by applying rotations (and complex rotations) which are determined
with the help of unitary (non-unitary, respectively) transformations & such as

@(, B, y) = expl—ial; —ifTs — iy T3] (3.8)

where o, B, v are complex variables.
From the commutation relations (2.7) it follows that

(SE£UYF(T) = F(T Fixn)(§+0U) - (3.9)
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where F(x} is an arbitrary holomorphic (analytic) function on x and # is an integer. If we
choose F(x) = exp(—ifx) where g is a real or complex number and n = 1, we obtain the
Hausdorff-Campbell-Baker [15] formula

exp(—iBT)(S + U) exp(iBT) = exp(£A)(S £ U). (3.10)

Therefore, in the general case we find the following formulae for the @ transformation
(equation (3.8))

O, B, Y)(S1 £ U™ (S £ Un)2(Ss £ U} & (w, B, ¥)
= exp(Enio = naf £ n3y)(S1 = U™ (82 £ U2)™(S3 £ Us)™ (3.11)

and
ol(e, B, PITHT T (e, B, y) = T T T (3.12)

where ni, n; and sy are non-negative integers, and $t is the complex conjugate of P.

The last two equations mean that the real or complex numbers o, § and y are the free
parameters of the ‘rotation’ ®. Their choice in a definite manner can be used to significantly
simplify the original Schrédinger equation with the Hamiltonian equation (2.8) and even to
solve it analytically. It should be mentioned that this procedure is a generalization of the
Foldy—Wouthuysen ‘rotation” (in quantum electrodynamics) (see, e.g., [16]).

Let us consider only real values of o, 8 and ¥. Our first goal is to reduce the
Hamiltonian, equation (2.8), for the Schrédinger equation to the diagonal form by applying
the unitary transformation ®, equation (3.8), with the optimized values of &, 8 and y. In
fact, this means solving the appropriate eigenvalue problem analytically. However, it is
¢asy to show that this problem is not solvable exactly in terms of only three real parameters
o, B and y.

Another related problem is to obtain the ‘best approximate solution’ by 2 complete and
very careful optimization of the three real parameters for the nop-unitary transformation
Y, B, v)-

(e, B, y) = expl—a(S; — Ur) — (S — U2) — ¥ (83 — U3)l.

By the variational principle this problem can be reformulated as follows. Consider the basis
functions in the form

¢ =exp(—(f' + y)(S1 — Up) — (& +¥) (S — U2) — (@' + B)(S3 — Uy (3.13)

where ¢ is the ‘vacuum vector’ which can be chosen to be equal to 1. In this case the
coordinate representation equation (3.13) takes the form

¢ =exp(—(B + yHur — (@ + ¥z — (@ 4 Bus) = exp(—ad'ry — B'rar — ¥'ra). (3.14)

It should be noted that these functions have the factorized form in both the relative
coordinates rsj, 32, r21 and in the perimetric coordinates #, ¥3, #3. Our main question
is: how many such functions {¢} are needed to produce the lowest bound state in the
Coulomb three-body system? This question presents specific interest for the systems with
unit charges, i.e. for the X¥¥+Z~ ions.
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After very careful optimization of the o', 8’, ¥’ parameters in the functions ¢, the answer
is that except for the extremely weakly bound (so-called pre-threshold) systems (e. g. the
dtttp~ or pta*tn~ ions) one needs only one function (three parameters) for symmetric
(i.e. such as X+ X+ Z™), and two functions (six parameters) for non-symmetric systems (i.e.
such as XT¥+Z™). Our optimized values of the o, 8/, ' parameters for a number of such
systems are presented in table 1, together with the energy in quasi-atomic units (¢ = 1,7 =1
and Myia = 1, where mpy, = min(my, my, mz)). We considered the symmetric systems
from *°H~ up to “H} and a few non-symmetric systems. All mass values can be found
elsewhere (see, e.g., [17]). For comparisicn the ‘exact’ energies from the recent lterature
are listed for each system in table 1: ®H~ [18], 'K} [19) and *H} [20]. The variational
results for the other (intermediate) three-body systems with unit charges in table 1 are from
[21]). Our highly accurate variational results for the (teepe)~ and (dgege) ™ ions in table 1 are

“published here for the first time.

Table 1. The carefully optimized values of the three non-linear parameters and the total energies
£, and the best ‘exact’ energies Eo, (known from the literature) for the lowest bound states of
Coulomb three-body systems with unit charges in quasi-afomic units (rpin = 1,5 =1,e=1).

system o' 5 y! E; Eex
RH- 1.075018 0.483 7428 —.146 5637 —0.52386592978 —0.527750 1654431
T 1.074 801 04835586  —0.1464767 —0.523 762 83028 —0,527649048 182
D 1074693 0.4834670 —0.1464335 ~(0.52371154422 —(0.527598 324 665
Iy~ 1.074 368 04831917 _ 01463035 . 052355741056 —0.527445881093
Mu= 1.069273 04788893 —0.1442731 —0.52113993874 —0.525054806223
ttu~p~ 1.032008 04482164 —0.129 8856 —0.50344312367 —0.507544 602642
dtu—u~ 1.011947 0.4322761 ~0.122 4746 —={0.493 906 140 66 —0.498 103091 755
ptu—u~ 0.9563414 03901085 —0.1031240 —0.46742432625 —0.4713866342087
3t1-1- 07888136 02797721  —0.0548905 —0.387 14631377 0392141012853
2t1-1- 0.6978110 02294157 =0.0346167 —0.34319330120 --0.348371665 880
Ps—(1*1717) 0.5201386 0.1479152 —0.0059907 . =0.2565692004 87 —~0.262 0050702326
prptu~ 0.9390592 0.1973986 0.08008795 046504770398  —0.494 3868202486
dtdtp- 0.991 9291 0.2018128 0.09894401 —~0.49112243557 —=0.531111135402
trtt e~ 1.011036 0.203 3346 0.106375% =050051661700 ~0.546374225598
IH; 1.051496 0.206 4299 0.1233115 —0.520346 39558 —0.597 1390625
°°H;' 1.052118 02064762 (.123 5856 —0.52065079764  —0.6026342140
prdtu~ 09727714 01154430 0.1082796

03113552  0.9602925 004818517 048083486368 —0.512711 7965008
pHetu~ 0.9861977 0.09504393  0.1130547 R

0.3525432  0.9672839  0.03443778 —0.48760018887 ~—0.5198800897819
aretu~ 1.003 480 0.169 3369 (.1119977

02393984  0.9998013 = 0.09045443 —{.538 594 9750358

—0.496 157998 83

The optimized values of the nonlinear parameters are of great value, since by using
these one can very easily estimate properties of such systems, e.g. the expectation value
of the {(8,...) function for the Ps~ ion is ~ 0.020076 8859, and by following [22] the total
annihilation rate for the Ps™ ion is ~ 2.0200857 ns~!. The ‘exact’ result is ~ 2.086 12 ns™*
[21,22]. However, in the cases of other properties the agreement is not as good, e.g. for
the electron—electron cusp. The same approach may also be very useful for the cases of the
harmonic oscillator potential, the spherically symmetric square well potential and in other
even more general and complex cases.
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3.3. The virial theorem

Finaily, let us consider the virial theorem for three-body systems. As is well known, the
virial theorem is of great value as an independent test of the results of numerical solution
for the appropriate Schridinger equation. The physical meaning of the virial theorem is that
the real physical state must be optimal with respect to distance variation [23]). However,
in the independent perimetric coordinates the distance variations are determined by the T;
(i = 1,2, 3) generators. We can write the following three independent hypervirial relations
f23-25] i

O (H — EYT; — Ti(H — EY¥) = (¢, A} =0 (3.15)

where i = 1,2,3 and ¥ is the eigenfunction which corresponds to the eigenvalue E. To
obtain the explicit form of the A; operators the following commutation relations are useful

[T}, (Sp =k Ug)"] = indjn(Si = Up)” (75, (T)"} =0 (3.16)

where j =1,2,3;k=1,2,3 and » is a non-negative number.

By using the explicit form of the operator (H — E) (equation (2.8)) and the commutation
relattons (equations (3.16)) it is possible to find each hypervirial operator 4;. By summing
equations (3.15) on i(i = 1, 2, 3) one obtains the relation between the expectation values of
the kinetic energy and potential energy which is often called the “virial theorem” [7, 26-7].

In conclusion we wish to mention that the same algebraic approach can be extended
to the case of Dirac-type equations as well as to the cases of non-local potentials (e.g.
Hartree—Fock equations).
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